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ABSTRACT 
In this paper, we present a model based on a multi-resolution, 
multi-source and multi-modal (M3) bootstrapping framework that 
exploits knowledge of sub-domains for concept detection in news 
video. Because the characteristics and distributions of data in 
different sub-domains are different, we model and analyze the 
video in each sub-domain separately using a transductive 
framework. Along with this framework, we propose a “pseudo-
Vapnik combined error bound” to tackle the problem of 
imbalanced distribution of training data in certain segments of 
sub-domains. For effective fusion of multi-modal features, we 
utilize multi-resolution inference and constraints to permit 
evidences from different modal features to support each other. 
Finally, we employ a bootstrapping technique to leverage 
unlabeled data to boost the overall system performance. We test 
our framework by detecting semantic concepts in the TRECVID 
2004 dataset. Experimental results demonstrate that our approach 
is effective. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval] Content Analysis 
and Indexing methods; I.2.10 [Artificial Intelligence]: Vision 
and Scene Understanding-video analysis.  

General Terms 
Algorithms, Experimentation.  

Keywords 
Domain Knowledge, Unlabeled Data, Text Semantics, Multi-
resolution analysis, Transductive Learning, Bootstrapping. 

1. INTRODUCTION 
In recent years, the volume of digital video collections has 
increased exponentially, following the wide availability of low-
cost multimedia recording and storage devices. There is 
increasing demand for effective solutions to manage such large-
scale video databases.  Because it is more convenient for novice 

users to express their information needs through concepts, the 
ability to index video contents at the semantic level (in terms of 
concepts) has attracted a lot of research interest.  

In TRECVID evaluations, one of the important video genres 
is news video. News video usually includes several sub-domains 
such as sports, finance, live reporting etc.  Techniques to classify 
shots into sub-domains are relatively mature [2]. Thus, many sub-
domain analysis techniques have been used in the query-class 
dependent retrieval [6, 22].  These techniques first classify each 
user’s query into one of the predefined categories and then 
employ query-class dependent weights to fuse the multimodal 
features for retrieval.  This suggests that multiple sub-domain 
analysis should be effective for news video retrieval. However, 
few works have been done in capturing concept occurrence 
distributions from different sub-domains in the concept detection 
task [1, 5, 9, 18]. Because each sub-domain data set may have 
their own characteristics, training a model by mixing data of 
different sub-domains may lose important information and 
degrade the performance of the systems. On the other hand, if we 
segment the training data into several smaller data sets in different 
sub-domains and use them separately, in some domains, we may 
not have sufficient positive training data. Related works of this 
problem is the cross-domain adaption problem as investigated in 
[24]. However, given an existing classifier, they [24] required 
sufficient amount of labeled examples in the new dataset to learn 
the “delta function” between the original and the adapted 
classifier. This may not be practical as in many cases, there may 
not be much labeled data.  Thus, given a training set in news 
video, we face the first problem on how we can make use of the 
knowledge of sub-domains to tackle the problems of sparseness 
and uneven distributions of training data.  

Multimedia video processing refers to the idea of integrating 
information of different modalities [17], such as the text from 
automatic speech recognition (ASR) and visual contents, to 
analyze and process the contents of video.  Yang et al [23] 
proposed a text-based retrieval method with visual constraints in 
Person X detection. However, it only works in person related 
concepts.  Snoek et al [18] identify two general fusion 
approaches: namely early fusion and late fusion. The early fusion 
scheme integrates unimodal features before learning the concepts. 
Although it yields a truly multimedia feature representation, it has 
problems of high dimensionality and it is difficult to combine 
features into a common representation at a single resolution. The 
late fusion scheme first reduces the unimodal features to separate 
concept scores, and then integrates these scores to learn the 
concepts. Such an approach can focus on the individual strength 
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of each modality. However, this brings a potential loss of 
correlation in mixed feature space. Thus both approaches have 
their own strengths and weaknesses, and their relative 
performance across multiple test corpuses are mixed. Thus a 
second challenging problem is how to let evidence from multi-
modal features support each other in a generic concept detection 
framework. 

Naphade and Smith [15] surveyed the state-of-the-art 
systems and found that most researchers adopted a supervised 
learning approach to detect the concepts. Such a type of learning 
requires the estimation of an unknown function for all possible 
input values. This implies the availability of good quality training 
data, which includes most typical types of the data available in the 
test set. If such a condition is not satisfied, the performance of 
such systems may degrade significantly. Yan and Naphade [21] 
proposed a multi-view semi-supervised cross-feature learning 
method. They first used the labeled training set to learn one 
classifier in each view. They then boost the views from each other 
by augmenting the training set with unlabeled test data on which 
the other views can make high-confidence predictions.  However, 
Tian et al [19] pointed out that unlabeled data helps only if 
labeled and unlabeled data are from the same distribution in a 
semi-supervised learning framework. Otherwise, the unlabeled 
data may degrade the performance when it is added. Other 
researchers adopted another way to use unlabeled data. For 
example, Qi et al [16] proposed a transductive learning method to 
infer unlabeled test data by finding related labeled training data 
via a clustering method. However, there are at least two open 
problems. One is how to segment the clusters until their contents 
are as pure and as large as possible. A pure cluster is defined as 
one where the labels of training samples are mostly positive or 
negative such that the entire cluster including the test samples can 
be labeled accordingly. The other problem is how to analyze the 
unknown clusters, which are impure clusters or clusters that 
include only test samples. Thus, a third problem is when and how 
to encode and explore the knowledge from unlabeled data 
properly in the inference framework.  

In this paper, we propose a sub-domain based multi-
resolution bootstrapping framework to tackle the above three 
problems. To tackle the first problem, we separate the whole 
corpus into eight sub-domain data sets and develop a sub-domain 
adaptive transductive learning algorithm. For the second problem, 
we leverage a multi-resolution inference structure and constraints 

to permit evidence from different modal features to support each 
other. To tackle the third problem, we make use of unlabeled data 
by combining two learning methods. We first employ transductive 
learning to capture the distributions of training and test data 
simultaneously so that we have the knowledge to know when we 
can make an inference via training data. We then combine it with 
a bootstrapping technique to further process the test results with 
low confidence from transductive learning. We test our 
framework on concept detection task based on the TRECVID 
2004 dataset. The test results demonstrate that our framework is 
superior to reported systems. 

The rest of the paper is organized as follows: Section 2 
describes the design consideration. Section 3 presents an 
overview of our framework. Sections 4 discusses in detail on our 
multi-resolution, multi-source, multi-modal transductive learning. 
Our multi-resolution bootstrapping inference strategy is covered 
in Section 5.  The experimental test-bed and evaluation results are 
presented in Section 6. Finally, Section 7 concludes the paper. 

 

2. Design Consideration 
In this Section, we introduce the motivation of our M3 
framework. We focus our discussions on three topics: multiple 
sub-domain analysis, multi-resolution and multimodal fusion, and 
transductive learning with bootstrapping.   

2.1 Multiple sub-domain analysis 
In concept detection, many researchers have developed mid-level 
detectors to supplement the low-level features such as color and 
texture. Chang, et al [3] believe that abstracting low-level features 
to mid-level allows for inclusion of different modalities without 
resulting in an excessively high dimensionality. Several 
researchers have reported good performance on a number of mid-
level detectors in news video.  For example, Chaisorn [2] reported 
high accuracy of over 90% for shot genre detectors, such as 
anchorperson, live reporting, commercial and finance etc. 
Because of good performance for such mid-level detectors, 
researchers [1, 5] have made use of them to improve the concept 
detection results.  In fact, such mid-level detectors can also be 
used to segment the corpus into multiple sub-domains. However, 
few research efforts have been carried out to use concept 
distributions in these sub-domains for the concept detection task.   

 
Figure 1: The distributions of positive data of the 10 concepts from TRECVID 2004 in the training set. 

 

 
250



        In our work, we segment the news video corpus into the 
categories of anchor person, sports, finance, commercial, with the 
rest placed under live-reporting. The reasons for the above choice 
are that the detectors for the first four categories are well defined 
[5], and the distributions of concepts in those 5 categories are 
distinctive. We used TRECVID 2004 as our test corpus, which 
has two series of news, ABC World News Tonight and CNN 
Headline News. Because the styles of these two sources of news 
are different, we segment them separately. This gives rise to eight 
sub-domains of: ABC live reporting, ABC commercial news, 
ABC anchorperson, CNN live reporting, CNN sports, CNN 
finance news, CNN anchorperson and CNN commercial news. 
From Figure 1, we can observe that the distributions of concepts 
in these sub-domains are very different. Thus, we should encode 
such distributions into the framework to improve the concept 
detection performance. 

In addition, the characteristics of data from different domains 
may be different. From Figure 2, we find that shots sharing the 
same semantic concept for a product commercial usually have 
high similarity in both visual and text components. However, 
shots sharing the same semantic concept in live reporting may 
only share a few clue words in the ASR text, and tend to have 
large variations in the visual feature space.  Thus, in order to 
capture the statistical pattern effectively, our analysis should base 
on distributions of multiple sub-domain data sets respectively. 

 
 

    

    
  (a) Two examples for concept “Boat/ship” in ABC commercial 

sub-domain. 

     

    
(b) Two examples for concept “Boat/ship” in ABC live reporting 

sub-domain 

Figure 2: The characteristics of data from different domains 
may be different 

2.2 Multi-resolution fusion 
Currently, the state-of-the-arts systems fuse multi-modalities at a 
single resolution (mostly at the shot layer). As the shot boundary 
is designed to capture the changes of visual features, it is suited 
for visual analysis but fails to capture the text semantics well with 
breaks occurring often in the middle of a sentence. Yang et al [23] 

found that this is a common problem in news video analysis. In 
order to tackle the problem, we propose a multi-resolution fusion 
strategy. In our model, we define three resolution layers. They are 
the shot, multimedia discourse and story layer.  

At the shot layer, we attempt to capture the semantics by 
finding similar images using color, texture and edge visual 
features. Such similar images are collected by an average-link 
clustering method. The choice of the clustering results is selected 
based on Vapnik Combined Bound [25] in a transductive 
inference framework. Figure 3 demonstrates the ability and 
limitation of visual feature analysis to cluster shots sharing the 
same concepts. 
 

 

            
 (a) Visual analysis is able to cluster two shots sharing the same     

concept “basket scored”. 

            
 (b) Visual analysis fails to group two shots sharing the concept 

“boat”. 
Figure 3: Visual feature analysis at the shot layer. 

well you'll  need  strength  knowledge  and 
experience  on  your  sign  that  specific 
like  helping  you  protect  your  family 
and  plan  to  stick  your  retirement.

 
Because of the limitation in discriminative power of visual 

analysis, it may cause many false alarms and misses.  To 
overcome these limitations, we purify the clustering results and 
make further inference by text information. We perform text 
analysis at two layers. One is a multimedia discourse layer, which 
captures the synchronization between the text features at the 
sentence level and the visual features at the shot level. The MM 
discourse boundary occurs at the co-occurrence between the 
sentence and shot boundaries. In this work, we adopt the speaker 
change boundaries generated by the speech recognizer [8] as the 
pseudo sentence boundaries. This layer captures the semantics 
mainly by extracting a group of words from the enclosing ASR 
text. As it is insufficient to infer linguistic variations, we employ 
web-based knowledge (see Section 4.2) to bridge this gap in a 
transductive learning framework.  

well you'll  need  strength  knowledge  and 
experience  on  your  sign  that  specific 
like  helping  you  protect  your  family 
and  plan  to  stick  your  retirement.

She was the flagship of windjammer’s fleet 
a 300 - foot reconditioned tall ship called 
the “fantome". 

 The ship had been held for five months in a 
Mexican port while authorities there tried to 
get the owners to pay their bills. 

Carnival  cruise  lines  new  smoke  free  
ship  began  sailing  out  of  Miami  this  
week.  

 
(a) Concept “Boat/Ship” and word vector ”ship, Miami...” at       

the MM discourse layer 

 
(b) Concept “Boat/Ship” and word vector “Captain, 

passengers... ” at the MM discourse layer   

Captain Guyan march first headed west 
and then north to Belize. All 97 
passengers disembarked safely. 

 
Figure 4: Text analysis at the MM discourse layer 
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Figure 4 shows the ability and limitation of text feature 
analysis at the MM discourse layer. From the Figure, we can infer 
that the shot in 4(a) has high degree of relevance to the concept 
“Boat/Ships” based on the word vector at the MM discourse 
layer; but it is hard to make such a decision in 4(b). In order to 
tackle this problem, we incorporate text analysis at the story layer 
into the framework. There are many story segmentation methods 
for news video as surveyed in [4]. In this paper, we perform a 
simple story segmentation using the heuristics based on 
anchorperson, some logos, cue phrases and commercial tags [5]. 
At the story layer, we attempt to capture the semantic concepts by 
exploring the relationship between the concept and topics of a 
story. Here the topic refers to the main focus of a story. We 
employ the method developed in [14] to extract topics, which 
mainly depends on a set of high frequency ASR words in a story. 
Based on our topic extraction system, we could find the topic 
vector for the shots in Figure 4(b) is {ships, storm, hurricane, 
fantome}. According to such a topic analysis, we can conclude 
that the enclosed shots may have some degree of relevance to the 
concept “boat/ship”.   

 
2.3 Transductive and bootstrapping learning  
The common problem of the current learning approaches is that 
the inference is based on “static” data, which comes in the form of 
training data. We assume that we have the ability to make 
inferences via the knowledge from training data alone. However, 
news video often contains new reports, and thus the domain has 
the inherent characteristic that there are always some differences 
between the training data and test data. Based on our analysis, 
there are at least two types of variations between the training and 
test data. One is called “gradual transition”. For example, given 
two news reports -- one is about “September 11 event”, and the 
other is about “The progress of NATO invading Afghanistan”. If 
one is the training data and the other test data, we may have 
difficulties to assign semantic label “violence” to the test data 
based on training data. However, if we have documents about 
“September 11 event and al-Qaeda forces” and “NATO invaded 
Afghanistan to remove al-Qaeda forces”, we may transfer the 
semantic label “violence” from training to test data via these 
linked documents. The other variation is called “mutation”.  For 
example, the concept “Clinton” may occur in the event of a 
middle-east peace talk. It can also appear in the event of the 
Lewinsky scandal.  Again, it may be difficult to transfer the 
semantic label “Clinton” from one event to the other event, such 
as the case shown in Figure 5.  
 

 

 
Figure 5: Different events include the same concept “Clinton” 

with very few non-stop words overlapping 
 

In our framework, we propose the multi-source transductive 
learning under the bootstrapping framework. That is, we first 
employ transductive learning to capture the distributions of 
training and test data so that we have the knowledge to know 
when we can make an inference via training data. We then tackle 
the “gradual transition” problem by using a bootstrapping 
learning approach. It may add some linked documents to reduce 
the gap between training and test data. We tackle the “mutation” 
problem via our multi-source model, which captures the 
relationship between the words describing events and concepts 
such as “Clinton” via web statistics.  
  

3. Overview of our M3 system 
In this Section, we introduce our M3 framework.  We will present 
the framework of our system, following by a presentation of the 
multi-resolution inference structure. We leave the detailed 
discussion on sub-domain transductive inference and multi-source, 
multi-resolution bootstrapping inference to Sections 4 and 5.   
         Figure 6 shows the bootstrapping architecture of our system. 
Given a corpus, we first employ the high performance mid-level 
detectors such as the anchorperson, commercial, finance and 
sports detectors [5] to segment the corpus into eight sub-domain 
data sets, as shown in Figure 1. We then perform the multi-
resolution, multi-source and multi-modal (M3) transductive 
learning model as shown in Figure 7 to detect the concepts in 
each of the sub-domain data sets separately. After that, we select 
results with high confidence from all sub-domain data sets. If the 
number of positive test data is above the threshold, or when data 
propagation has converged, we will terminate the process. 
Otherwise, we employ a bootstrapping method to make further 
inferences. We will repeat the M3 transductive inference in those 
sub-domain data sets, which new test data are added into the 
training data. 
 
 Divide the whole corpus data set into smaller sub-domain 

data sets based on mid-level detectors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Employ a M3 transductive learning framework to infer concepts 
in each sub-domain data set separately. (See Figure 7) 

 
Figure 6: The bootstrapping architecture of our system 

 

Yes

No

On the other hand republicans say Erskine
Bowles the white house chief of staff testified 
that the president did ask him to find 
Lewinsky a job inside the white house. 

Converged or sufficient 
number of relevant test 

shots found? 
Yesterday Mr. Clinton and Israeli Prime 
Minister Benjamin Netanyahu agreed on a 
partial peace plan.  

Combine the results from all sub-domain M3 transductive 
learning. 

End 

Add new-labeled test data into training data set. 
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         Figure 7 illustrates our M3 transductive learning model 
performed for each sub-domain separately. The transductive 
learning includes shot, MM discourse and story layer inference. 
At each layer, we carry out transductive inference to detect 
concepts by performing the average-link clustering. We analyze 
the resulting clusters based on the occurrence and frequency of 
positive training samples and multi-resolution constraints. We 
classify the test shots using the procedures outlined in Section 4.4 
into three types: positive (P), unknown (U) and negative (N) sets. 
The so-called unknown category of test shots consists of those 
that cannot be labeled as positive or negative with sufficiently 
high confidence. Our inference begins with the highest resolution 
layer- the shot layer. Based on the information at the shot layer, 
we classify the test shots into (P1), (U1), and (N1) sets. The U1 
set will be further processed at the lower resolution layer – the 
MM discourse layer by performing the web-based analysis and 
transductive learning. After the analysis at the MM discourse 
layer, we can divide U1 again into three sets – the positive (P2), 
the negative (N2), and the unknown (U2) sets. Finally, we further 
process the U2 clusters by labeling them using the topics 
extracted at the story layer. After the story layer analysis, the U2 
data set is classified into (P3), (N3) and (U3) sets.  The final 
ranking of the shots is based on:  P1, P2, P3, U3, N3, N2, N1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

   The final ranking of shot sequence: P1, P2, P3, U3, N3, N2, N1. 
 

 Figure 7: Our M3 transductive learning inference structure 

4. Transductive learning at the multi-
resolution layer 
In this Section, we first introduce multi-modal features in our 
framework. We then discuss the constraint based clustering. After 
that, we present our transductive learning model. Finally, we 
discuss how our algorithm tackles the problems of sub-domain 
adaptation.  

4.1 Visual features at the shot layer 
At the shot layer, we use common low-level visual features as 
used in most other works to analyze the key frame images for 
each shot. The visual features used include Edge Histogram 
Layout (EHL), Color Correlogram (CC), Color Moments (CM), 
Co-occurrence Texture (CT) and Wavelet Texture Grid (WTG).  
For each shot, we extract the above visual features and generate a 
feature vector . As discussed in the previous 
Section, clustering is performed as part of our transductive 
learning.  In a clustering process, one of the most important 
aspects is the definition of similarity measure. At the shot layer, 
we adopt the cosine similarity between feature vectors as the 
similarity between shot i and shot j: 
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Shot layer analysis:  transductive learning via average link 
clustering 

 

4.2 Text features at the MM discourse and 
story layer 

Assign positive 
labels to 

confident test 
data (P1) 

Assign unknown 
labels to 

ambiguous test 
data (U1) Because the characteristics between MM discourse and story 

layer are different, we capture two types of text semantics 
respectively. Usually, one MM discourse includes one or very 
few sentences, which come from automatic speech recognition 
(ASR) results. Due to ASR errors and limited number of words, 
there is insufficient text information to capture text semantics. 
Thus, we just extract keywords at the MM discourse layer. On the 
other hand, a story includes many sentences and covers a 
complete end. This provides relatively rich linguistic information. 
We employ a topic extraction algorithm to capture text focus of 
the story.  Compared to keywords, using topic words to infer 
visual concepts is more effective. This is because visual 
information is indirectly represented in the focus of the topics.  
         Both the keyword vector at the MM discourse layer and 
topic vector at the story layer are used to represent the text 
content of individual entity at both layers. We denote such text 
vector as T ( .On the other hand, we need to model the 
text content of multiple entities at the cluster level. Here we 
regard the frequently occurring terms as the labels of the clusters, 
where the clusters are derived from higher resolution analysis. 
That is, when we form keyword vectors at the MM discourse 
layer, the cluster results come from the shot layer analysis. 
Similarly, when we form topic vectors at the story layer, the 
clusters came from the MM discourse layer. Given a cluster vcri, 
we can extract such text labels to represent vcri using the 
following term ranking formula:  

                                                                                          (2) 
 erInTheClustNumofShots

WerIncludesInTheClustNumofShotsvcrWP k
ik

)(),( =

Transductive learning at the MM
discourse layer via average link 
clustering on keyword vectors.

Web-based image 
label analysis at the 
MM discourse layer 

Fusion of two types of analyses though a confidence 
measure 

Assign negative 
labels to 

confident test 
data (N1)

Fuse the two types of analyses though a confidence measure 
and classify the U2 shots into P3, U3 and N3 sets 

Assign positive 
labels to 

confident test 
data (P2) 

Assign unknown 
labels to 

ambiguous test 
data (U2) 

Assign negative 
labels to 

confident test 
data (N2) 

Transductive learning at the story 
layer via average-link clustering 
on topic vectors. 

Web-based image 
label analysis at 
the story layer 
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If P (Wk, vcri) >β, we regard the term Wk as a text label for such a 
cluster. For each cluster, we model it as a text vector 
TC .   ),...,,( 21 nwww

Although TC is the text label vector for the clusters, we 
employ the same text similarity measure. Thus, in the discussion 
on text similarity, we use one notation T to represent text vectors. 
As different text vectors may express the same concept, we 
propose a new web-based concept similarity measure that uses the 
information redundancy of the Web to assign high similarity 
scores to those relevant text vectors with few or even non-
overlapping words such as the cases in Figure 8, in which both are 
about the concept “Clinton”. Of course, such a method will still 
assign high similarity scores to two text vectors when there is 
high word overlap between them. The definition of such a 
similarity measure is:  

                           (3)           |)2|()1|(|1)2,1( TCPTCPTTSim xwebxwebunit −−=

where T1, T2 are two different text vector instances, C is the 
word from the concept text descriptions. We estimate P  
in Equation (3) as follows: 

x

(Cweb )| Tx

      
)(#

)|(
T

TCP x
xweb =

),(# TC                                                            (4) 

where we compute # (Cx,T) by using the text description of 
concept X together with text vector T as the query to the Google 
search engine, and count the estimated number of hits that  
include the query terms. # (T) is computed in a similar manner.   

To improve the effectiveness of Web searches, we need to 
select a few dominant terms in the text vector as query. Here we 
employ a text weighting scheme based on tf.rf developed in [13]. 
Such a method measures the importance of a term based on its 
frequency (tf) and relevant frequency (rf). Here the relevant 
frequency is obtained by computing the ratio of the term’s 
occurrences in the positive and negative training data.  In our 
application, we found that some important terms may occur only 
in test data; while the relevance frequency rf in the tf.rf approach 
does not consider terms occurred only in test set.  In order to 
tackle this problem, we leverage the web statistics to obtain other 
relevance information. The new weighting Equation is: 
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where  and   are obtained by counting 

the co-occurrence between term Wi and Cx,, and the occurrence of 
term Wi in training data respectively; while #  and 

 are computed in a similar manner as the variables in 
Equation (4). αw is designed to balance the training data and web 
statistics, and is estimated as: 

trainingxi CW ),(# trainingiW )(#

web

1( +            )Log      tf<λ 

  αw=                                                                                     (6) 
            )1()1( λλ ++Log   Otherwise     

where tf is the term frequency and λ  is a predefined threshold. 
That is if the term has sufficiently high frequency in training data, 
then the value of rf is computed based on the statistics in training 
data. Otherwise, we will incorporate web statistics for smoothing. 

The resulting scheme considers all the words in the whole corpus 
instead of just the words in the training data.  

4.3 The constraints-based clustering   
The key to transductive learning is how to map specific (test) 
cases to corresponding (training) cases. Such a mapping could be 
obtained by an average-link clustering. The ideal clustering 
results for transductive learning are that the clusters are pure and 
large.  If the clusters are pure, we could achieve high precision. If 
the size of the clusters is large, we could obtain high recall.  
However, it is often hard to achieve both advantages at the same 
time. Thus, our strategy includes three steps.  
      First, we attempt to obtain small and pure cluster results. In 
order to make the cluster results as pure as possible, our shot layer 
clustering process is based not only on visual features, but also 
constraints from different resolutions. Such text constraints from 
lower resolutions provide the cannot-link constrains that avoid the 
clustering of semantically dissimilar shots together. Figure 8 
illustrates the cannot-link constraints from MM discourse and 
story layer to purify the shot clustering results. If we were to 
measure the similarity between these two shots by global visual 
features alone, they may have some degrees of similarity as 
shown in Figure 8. However, when we consider its contextual 
information at the MM discourse and story layers, we would 
know that one is related to the concept “Clinton” while the other 
is irrelevant. That is, the two shots are not similar to the concept 
“Clinton” in the semantic view.  The text constraints come from 
the measure of homogeneity of text semantics. The text-based 
Cannot-Link constraint is defined as follows. For a shot layer 
clustering, given two shots S(i) and S(j) with high visual 
similarity, if 

1)](),([ δ<jSiSMD 2)](),([Sim  and < δjSiSSimST

()MD ()ST

 then 
shots i and j cannot be clustered, where Sim  and Sim  are 
text similarity at the MM discourse and story layer respectively.  
Thus, the clusters we obtained in this step are relatively pure and 
small.   
 
    

 

 
Figure 8: An example of cannot-link text constraints purified 

visual shot clustering results 
 
      Second, we further cluster the results from the first step by 
using the must-link and cannot-link constraints, along with the 
text features at the MM discourse layer. The must-link constraints, 
derived from visual shot clustering, ensure that two highly 
“visually” similar shots that were gathered in the shot layer 
analysis remain clustered at the MM discourse layer. It helps to 
establish the linkage between visual features and ASR terms. That 
is, given two shots S(i) and S(j), and vcr is a cluster among visual-

The word vector at the MM discourse 
layer is {Clinton, Chile, summit....} 
The topic vector at the story is {Clinton} 

The word vector at the MM discourse 
layer is {Nancy Reagan, lumpectomy ...} 
The topic vector at the story layer is 
{Nancy Reagan} 
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shot based clustering results; then the must-link constraint at the 
MM discourse cluster is defined as follows: , if 

and , the shot i and j must be linked together at 
the MM discourse layer analysis. We also introduce a cannot-link 
constraint at the MM discourse layer from the lower story layer 
too. That is, given two shots S(i) and S(j) with high text similarity 
at the MM discourse layer,  if 

kjSiS ),(),(∃

2)]

)(iS )( jS kvcr∈

(),([ δ<

()STSim

jSiSSimST
 then shots i 

and j cannot be clustered together, where  are text 
similarity at the story layer.  
      Third, we further cluster the shots based on the results at the 
MM discourse layer by using the must-link constraints and text 
features at the story layer.  The must-link constraints at the story 
layer clustering is defined as: suppose mmcr is a cluster from MM 
discourse layer clustering results, , if and 

,  then shot i and j must be linked together at the 
story layer.  

kjSiS ),(),(∃ )(iS
)( jS kmmcr∈

       Finally, we rank the results based on the shot, MM discourse 
and story layers. Because the cluster results at the shot layer are 
the purest, we have the highest confidence for the results and we 
assign them the highest ranking. With the sizes of the cluster 
results becoming larger and larger at the MM discourse and story 
layer, our confidence of the clusters become lower. Thus, we 
assign lower rankings to these results. Based on the above 
strategy, we could approximately obtain purer and larger cluster 
results to facilitate our inference.  
 

4.4 Transductive inference  
The transductive inference is used to analyze both the visual and 
text features in our framework. It involves three stages.  

In stage 1, a series of clustering are applied as different 
inference hypotheses using the constraint-based average-link 
clustering, which is discussed in Section 4.3.   

In stage 2, a hypothesis is selected based on Vapnik 
Combined Bound [26] to determine the confidence of the series of 
clusters. That is, given a hypothesis and unlabeled test 
set , the predicted risk  of unlabeled samples is:  

Hh∈
uX )( uh XR

)

1ln)1log(
)(()()(

m

C

u
umXRXR mhuh

δ
τ +−++

+≤                (7)  

where m is the number of labeled samples in the training data; u is 
the number of unlabeled samples in test data; δ  is the confidence; 
C is the maximal partitions in the corpus; τ   is the number of 
clusters in current hypotheses (cluster); and R  is the total  
number of positive and negative training data in the same clusters.   

)( mXh

       Such clustering typically results in three types of clusters: 
       Type1: The cluster contains data from both training and test  

sets.  Only in this type of clusters, we could use 
labeled training data to predict the relevance of the 
unlabeled test data. 

 Type 2: The cluster contains only data from the training set. 
This shows that such training data is not useful in 
predicting the relevance of the unlabeled test set. 

 Type 3: The cluster contains data from the test set only. We 
do not know whether such a cluster is relevant to 
concept X or not. We call such clusters 
ambiguous/unknown clusters.  

       In stage 3, we label the test sample in the selected hypotheses 
by using the training data in the same cluster. That is, given a test 
shot Sunit appearing in a cluster containing both training and test 
data under a certain resolution, we compute the probability of Sunit 
appearing in cluster Cx, or , as: )|( unitx SCP
       

theClusteringShotsInNumOfTrain
heClusterCthingShotsWiNumofTrain

SCP x
unitx

int)(
)|( =

x

i )|( ix DC

|(1[log*)|(*)( 2 ixx DCPSCPCIS +=

D

       (8) 

However, some clusters may include very few training data, 
which may violate the “Law of large numbers” in probability 
inference. Thus, we have to add a variable: confidence index (CI), 
to partially tackle this problem. We estimate CI in a similar way 
as  αw  using Equation (6), and  we use TD to replace the item tf. 
TD represents the number of training data in a cluster.     

In addition, we include the probability of concept C in sub-
domain D , or P , into the final score function for S as: 

  ]Score                     (9)                          
where CI is the confidence index for the cluster that includes the 
test shot S.  Because in some sub-domains there is even no 
positive training data, we employ the smoothing method [12] to 
estimate the probability of concept 

xC  in sub-domain 
i
as: 

        
1)(

1)()()|(
+

+
≈

ingIntheTrainDShotsIn
DinCShotWithDC

i

ix
ixP                           (10) 

where Di  is a sub-domain data set.  
Also because some clusters include only test data, that is 

type 3 clusters, we could not compute Equation (8). Thus we 
adopt a multi-resolution analysis strategy and a web-based text 
smoothing approach to tackle this problem. At the MM discourse 
layer, we bring web statistics into the framework when the 
training data is not enough. This is because the current web is a 
huge data depository and we can make use of the term co-
occurrence relationship to explore the semantics. That is, given a 
test shot S, we can find a MM discourse layer cluster mmcrj, 
which includes the test shot S. The text label vector for the cluster 
is TC, which is obtained by Equation (2).  The semantic concept 
inference is defined as follows:  

                                                                                                  (11) 
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We obtain # (Cx,TCi)web, # (TCi)web in a similar manner as in  
Equation (4) and CI is the confidence index.  

At the story layer, the inference is similar as that at the MM 
discourse layer.   

After each layer analysis, a shot classification component is 
used to divide the test shots into positive (P), unknown (U) and 
negative (N) sets. We can classify the test shots S at a certain 
resolution layer as follows: 

a) If

)]|(1[log*

)]|(*)1()|(*[)|(

2 ix

xwebxcorpusx

DCP

TCCPCISCPCISCScore

+

−+=

α>)|( , we label it as positive data and 

put it into the P shot set. 
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b) If Score layerlayerx SC δ<)|( , we label it as negative data and 

put it into the N shot set. 

c) Otherwise, we assign an unknown label to it and put it into 
U set for the lower resolution layer inference. 

where 
layerlayer δα ,  are pre-defined thresholds with  

layerlayer δα > .  

4.5 An adaptive transductive algorithm  
As shown in Figure 1, there is the problem of imbalanced 
distribution of training data in certain segments of the sub-
domain. However, the existing cross-domain adaption algorithms 
could not tackle the problem. This is because they adopted 
supervised learning. One of the most important assumptions in 
supervised learning is that the training samples have the same 
distribution as that of future test samples. Thus, if there is a 
problem of mismatch or imbalanced distribution of training data 
(say very few or even no positive training data) in some sub-
domain data sets, it is hard for these algorithms to adapt their 
classifiers.  

 Here, we develop a pseudo-Vapnik combined error bound 
transductive learning approach to partially tackle this problem. 
Our inference follows the label of training data if and only if there 
is enough training data with the same label in the same cluster as 
the target test data. However, as we have discussed in the 
previous Section, the function of Vapnik combined error bound is 
to select a cluster hypothesis. If there are very few or even no 
positive data, it is hard to compute the term R  in Equation 
(7) accurately.  To tackle this problem, we develop a pseudo-
Vapnik combined error bound adaption algorithm.  Given that 
there is insufficient training data for the current clusters in current 
sub-domain dataset, we leverage on training data in other sub-
domains to estimate the Vapnik combined error bound.  We 
obtain similarity values from those sub-domain data sets that have 
enough positive and negative training data. We then use the 
average of these similarity values as the pseudo-Vapnik combined 
error bound for the sub-domain with imbalance training data.  

)( mh X

The detail of the adaptive cross sub-domain transductive 
learning algorithm in our M3 framework is outlined as follows: 

 

Input:  A full sample set X ={X1, X2…Xm+u}; 
            A training set with semantic labels {(X1, Y1)…  

(Xm,Ym)}algorithm. 
Step 1: Compute the similarity between each sample pairs (Xi, Xj) 

and build a similarity matrix.  
Step 2: If there is a constraint between each sample pairs (Xi , Xj), 

then we set  Sim(Xi , Xj)=0 for a Cannot-Link constraint; 
or Sim(Xi , Xj)=1 for a Must-Link constraint.  

Step3: Place each sample in X as its own cluster, creating the list 
of clusters C: C=c1, c2…cl+u  
While (there exists a pair of mergeable clusters) do  
(a) Select a pair of clusters ci and cj according to the 

minimal average group distance 
(b)  Merge  ci to  cj and remove ci 
(c)  Save each partition as a hypothesis to the disk. 

            Endwhile  

Step 4: For each hypothesis, we compare it with pseudo-Vapnik 
combined bound and select the hypothesis that satisfies 
our pseudo-Vapnik combined bound constraints as our 
final clustering result. 

Step 5: Label the test samples for those clusters that include both 
training and test data.   

Figure 9: A constraint based transductive learning algorithm 
 

5. The bootstrapping framework 
We employ the bootstrapping technique to further process the 
unknown test results from the M3 transductive learning. We 
attempt to add some linked documents from test data to reduce the 
gap between the training and test data to tackle the “graduation 
transition” problem as discussed in Section 2.3.  Up to now, many 
bootstrapping algorithms are available. Most of them assume that 
the newly added unlabeled data belongs to the same distribution 
as the labeled data. However, this is not always true.  In order to 
reduce the errors from newly added unlabeled data, we propose a 
new bootstrapping algorithm, shown in Figure 10. The basic idea 
is that we use test data with high inference confidence to rerank 
the data in unknown clusters from our initial M3 transductive 
model. The main differences between our approach and other 
bootstrapping work [7] are (a) in order to reduce the risk of 
adding unlabeled data with wrong annotation labels, we set the 
confidence of the newly added test data to a relatively low value 
as compared to the labeled training data; and (b), the 
bootstrapping method only processes the data in the unknown 
clusters from our M3 transductive learning, rather than the whole 
test set. 

The detail of our bootstrapping algorithm is outlined as 
follows: 
 

Notation: P(i)(j) is a positive shot set, where i shows the layer of 
resolution for inference with i=1 denoting the inference at shot 
layer; i=2 for MM discourse layer; and i=3 for story layer. Index j 
records the number of iterations in the bootstrapping module. 
N(i)(j) and U(i)(j) are defined in a similar manner for  the 
negative and unknown shot sets respectively.  
Step1: j=0; initialize K=T, where T is a constraint (say T=50). We 

perform an initial M3 transductive inference. We  obtain 
an initial shot ranking sequence RS{P(1)(0), P(2)(0), 
P(3)(0), U(3)(0), N(3)(0), N(2)(0), N(1)(0)};  

Step2: If U(3)(j) is empty or the number of the positive sequence 
in   RS[P(1)(0),P(2)(0), P(3)(0), .....P(i)(j)] is above the 
user’s requirement or data propagation has converged, we 
stop the program. 

          Else, goto step 3.  
Step3: We obtain the top K shots from the shot ranking sequence 

RS as newly added positive labeled data and the bottom K 
shots from RS as newly added negative labeled data. 

Step 4: We redo the M3 transductive inference. We divide U(3)(j) 
into two sets. One set is a labeled set: which includes three 
positive P(1)(j+1), P(2)(j+1), P(3)(j+1) and three negative   
N(1)(j+1), N(2)(j+1), N(3)(j+1). The other set is still the 
unknown set U(3)(j+1). 
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Step 5: Add the new inference results into the shot ranking 
sequence: RS{P(1)(0), P(2)(0), P(3)(0) ... P(1)(j+1), 
P(2)(j+1), P(3)(j+1), U(3)(j+1), N(3)(j+1), N(2)(j+1), 
N(1)(j+1)...N(3)(0), N(2)(0), N(1)(0)}; 

Step 6: Update j and K for next iteration,  j=j+1; K=K+T; Goto 
step 2 

Figure 10: Our bootstrapping algorithm 
 

6. Experiment 
We use the training and test sets of the TRECVID 2004 corpus to 
infer the visual concepts. The corpus includes 137 hours of news 
video from CNN Headline News and ABC World News Tonight; 
67 hours of news video are used for training and 70 hours for 
testing. We measure the effectiveness of our model using all the 
10 semantic concepts defined for the TRECVID 2004 semantic 
concept task.  The concepts are listed in Figure 1.  

The performance of the system is measured using mean 
average precision (MAP) based on the top 2000 retrieved shots 
for all the ten concepts. This is the same to the evaluation used in 
TRECVID 2004.   

6.1 Test1: Multi-resolution analysis 
We perform three experiments on concept detection based on: (a) 
shot layer visual analysis without text, (b) shot layer + MM 
discourse layer analysis, and (c) full M3 model with story layer 
analysis.  We list the results in Figure 11. 
 

 
Figure 11: The results based on different combination of 

multi-resolution analysis 
 
        From the Figure, we observe that using only the shot layer 
visual analysis without text, we could achieve only very low 
MAP of 0.026. By incorporating text semantics at MM discourse 
layer, we could improve the result substantially to an MAP of 
0.116. The best result is achieved when we perform a multi-
resolution analysis at the shot, MM discourse and story level, with 
a MAP of 0.144. The results suggest that different modal features 
only work well in different temporal resolutions and different 
resolutions exhibit different types of semantics. 

6.2 Test 2: comparison with the reported 
systems on TRECVID 2004 Dataset 
In order to compare our results with other related systems on the 
same corpus, we tabulate in Figure 12 the results of all reported 
systems that have completed all the ten concepts in TRECVID 
2004. The systems are ranked based on their MAP performance 
from left (the best) to right (the worst).  

 
Figure 12: The comparison with other systems in TRECVID 

 

Figure 12 shows that our three combinations of systems are 
ranked as 1st, 5th, and 36th. Compare to the best reported system 
ranked 2nd in Figure 12, our M3 transductive framework achieved 
more than 21% improvement in MAP. We achieve better 
performance, mainly because: 

a) We encode the distributions of concepts in sub-domains into 
the framework. This benefits the detection and discrimination 
of concepts that have high occurrence in certain sub-domains. 
In addition, we can also obtain better statistical patterns, 
because we use the training data from different sub-domain 
separately so as to better capture the characteristics of 
different sub-domains.    

b)  We employ the multi-resolution fusion strategy to combine 
text and visual features.      

6.3 Test 3: the bootstrapping approach 
After performing the sub-domain based M3 transductive learning, 
we continue to run several iterations of the bootstrapping 
algorithm. The result is shown in Table 1.  

 
Table 1: The results from our bootstrapping approach 

 Our M3 
approach 

M3+bootstrapping 
approach 

MAP  0.144 0.145 

                                                                
       Table 1 shows that there is further improvement of 1% when 
we employ the bootstrapping approach. The improvement is 
statistically significant as judged by using paired t-test [10] 
(p<0.05).  This shows that the bootstrapping method is feasible.  
 
7. Conclusion    
Although research on semantic concept detection has been carried 
out for several years, the analysis based on multiple sub-domain 
concept distribution, multi-resolution fusion and bootstrapping 
technique is  relatively recent. This paper outlines a sub-domain 
based M3 bootstrapping learning framework. In this framework, 
we exploit the concept occurrence distribution in the sub-domain 
to boost the performance of the system and propose an adaptive 
cross sub-domain algorithm to tackle the imbalance in the concept 
distribution.  In the multi-resolution model, we integrate visual 
and text features by using a multi-resolution inference structure 
and constraints such that the evidences for inference come from 
the integration of multiple modalities.  Finally, we employ 
bootstrapping to process the unknown data from our initial M3 
framework. The experimental results on TRECVID 2004 data set 
demonstrate that our approach is able to achieve over 22% 
improvement in MAP over the best-reported system. 
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s/ 

This work is only the beginning. Although the performance 
of our system is better than the reported systems, it is still far 
from a satisfactory level of performance for general use. Further 
research can be carried out as follows: 

 In our framework, we regard the statistical dependency as 
causality. However, this is not always true. We plan to 
integrate statistical corpus knowledge, together with the 
knowledge of human annotations and manually built 
encyclopedia such as Wikipedia to further improve the 
performance.  

 We plan to encode concept relationships in concept 
detection.  

 We plan to improve our bootstrapping techniques.  
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